I. Course Information

Statistics & Data Analysis: April 11, 2018 — June 19, 2018
RSAN-120, Spring 2018
Distance Learning Course Week: Wednesday through Tuesday

Instructor: Dr. Brian Stout
You can contact me through discussion forums on our course web site: by replying to any of my posted messages, posting a new topic on the Questions and Comments forum, or posting to one of the various forums established for each class assignment.

To reach me privately, please use the Private Forum, which is also the method I will use to contact you. The Private Forum is used instead of email in the Strategic Analytics degree program.

Syllabus Overview
This syllabus contains all relevant information about the course: its objectives and outcomes, the grading criteria, the texts and other materials of instruction, weekly objectives, outcomes, readings, assignments, and due dates. Consider this your roadmap for the course. Please read through the syllabus carefully and feel free to share any questions that you may have.

Course Description
This course provides an overview of statistics and its application to predictive analytics. One goal in data analytics is to predict or infer future outcomes based on historically recorded data. This course begins with a study of data description with a focus on descriptive statistics and visual representation of data. The remainder portion of the course focuses on inferential statistics. Inferential statistics will focus on parameter estimation using confidence intervals, hypothesis testing, and regression model building.

Relevant Programs
- Required course for the MS in Strategic Analytics

Prerequisites
- RSAN 100: Business Intelligence, Analytics, and Decision Making, OR
- RSAN 101: Foundations of Data Science and Analytics.

Welcome to Statics & Data Analysis!
This course is one several electives that can be chosen to complete the elective requirement toward the M.S. degree in Strategic Analytics. This course will provide a foundation of knowledge in the areas descriptive and inferential statistics. This course focuses on the technical side of the mathematics underlying some of the most common and simple predictive analytics techniques.

Because this course is an elective in the MS Strategic Analytics program the expectation will be that you are more comfortable with learning on the online platform than students in the introductory courses. It is highly commended that you read this syllabus thoroughly, refresh yourself on LATTE, and proactively register on www.mymathlab.com for the homework and exam portion of the course.

The course procedures and policies are clearly detailed throughout this syllabus and the materials posted on the LATTE web site. Please familiarize yourself with these materials and feel free to ask me any questions.
Materials of Instruction

a. Required Texts

b. Topic Notes and Assignments

- Weekly required and optional topic notes, infographics and videos available on the course site
- 1 Final exam, available on www.mymathlab.com (week 10)

c. Online Course Content

This section of the course will be conducted using the Brandeis LATTE site and the Pearson MyMathLab site at www.mymathlab.com. The Latte site contains the course syllabus, discussion forums, links/resources to course-related professional organizations and sites, and weekly checklists, objectives, outcomes, topic notes, and discussion questions. All homework sets and exams will be on the MyMathLab site. Access information is emailed to enrolled students before the start of the course.

Overall Course Objectives

The course is intended to provide students with an understanding of:

- The definitions of key terms and concepts in descriptive and inferential statistics, including measures of central tendency, measures of dispersion, confidence intervals, hypothesis testing, and regression.
- The differences between measures of central tendency and when each one is most appropriate for a given data set
- The techniques to compute descriptive statistics by hand and using technology
- The difference between a sample and a population, including the basic concept of extrapolating information from a sample to a population
- The various types of confidence intervals for different population parameters and when to use what technique to compute them
- The various types of hypothesis tests for different population parameters and when to use what technique to compute them
- The applications of these statistics techniques to solve important strategic business decisions in planning, investment, and organization
- The concept of regression, model prediction, model fitting, and model comparison.

Overall Course Outcomes

At the end of the course, students will be able to:

- Explain what the concepts of measures of central tendency and measures of dispersion, including giving examples of when each different measurement is most appropriate.
- Describe the difference between a sample and a population
- Calculate descriptive statistics and exploratory data analysis
- Create visual representations of data including pie charts, histograms, line graphs, and scatter plots
- Describe the concept of a confidence interval
- Describe the concept of a hypothesis test
- Compute confidence intervals for parameters proportion, mean (with known & unknown standard deviation), and variance
- Compute hypothesis tests for parameters proportion, mean (with known & unknown standard deviation), and variance
- Compute regression models, measures of goodness of fit, and compare models
- Describe how and when inferential statistics can be used in business setting to make decisions
- Describe how to evaluate statistical summaries produced by data scientists

Overall Grading Criteria
Description of Grading Components

Weekly Discussions / Online Participation (30%, 3% per week)
All student discussion participation will be done online via LATTE. Each weekly block has a page that includes "Discussion Questions". This page describes the topics for discussion related to the course materials posted that week. Each topic description includes a series of discussion questions or other directions for providing a response.

To earn full credit for the Participation component of the grade, students will be expected to complete the following during weeks 1 through 10 of the course:

- Respond to at least 2 discussion topics each week. Post an original response to one topic by end of day Saturday, midnight EST, and to another by end of day Monday, midnight EST.
- Post at least 2 other substantive replies to the discussions each week by end of day Tuesday, midnight EST. These messages are replies to the original response messages of others, or replies to someone else’s reply message. The assumption is that you will read through the posts of your classmates to enhance your learning; reply to those of your choice, based upon your own experiences and insights.
- Post messages on three different days of the course week. While you may post all the required original responses and replies before the due dates, it is important for you to be involved in the discussions throughout the week.

During some weeks, responses to specific topics are due on certain dates; in other weeks, students may choose from among the available topics. Please review the discussion topic requirements carefully. These discussion requirements are described within the Discussion Questions page within each weekly block on the course home page; they are also listed in the Checklist page for each week.

Each of the two required **original response** messages contributes 30% of the weekly participation grade. Maximum grade is given for each of these if the posted message:

- Answers all questions asked and follows all directions specified in the topic description.
- Includes shared industry experiences and/or relates concepts to the topic notes and readings as appropriate. Note that all sources should be cited (refer to the Research Help > Citing Sources” link in the LATTE Resources block)
- Uses good grammar/spelling/format and cites sources as appropriate.
- Provides sufficient detail; **original responses must include a minimum of 200--300 words in order to count.** Some topics require lengthier responses in order to answer all of the questions.

Each of the two required **substantive reply** messages contributes 15% of the weekly participation grade. Maximum grade is given for each of these if the posted message:

- Provides substantive comments (beyond an "I agree" post) with follow-on points or questions to extend the conversation. **Substantive replies must include a minimum of 100--200 words in order to count.**
- Uses good grammar/spelling/format and cites sources as appropriate.

Posting of discussion messages needs to be done in a timely manner so that others in the class have sufficient opportunity to review these and provide replies.

Late Policy:

- **Half credit** is deducted for an original response that is one day late.
- **No credit** is earned for original responses that are posted more than one day late.
- **No credit** is earned for substantive replies that are posted late.
Additionally, 10% of the weekly participation grade is based on your participation in the discussions throughout the week.

- Maximum grade is given for those that post messages to the weekly discussions forum on three (or more) days during the course week.
- Partial credit is given for those that post their messages to the weekly discussions forum on only one or two days of the course week.
- The online participation grade for each week is based on your contribution to the weekly discussion forum, for example "Week 1 Discussions". Posts to the forums set up for discussion of general questions and comments, exercises, or assignments are not considered in the weekly participation grade.

To summarize, the online participation grade for each week is based on the following requirements:

<table>
<thead>
<tr>
<th>Weekly Requirement</th>
<th>Portion of Weekly Participation Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post Original response #1 by Saturday Night</td>
<td>30%</td>
</tr>
<tr>
<td>Post Original response #2 by Monday Night</td>
<td>30%</td>
</tr>
<tr>
<td>Post Substantive reply #1 by Tuesday Night</td>
<td>15%</td>
</tr>
<tr>
<td>Post Substantive reply #2 by Tuesday Night</td>
<td>15%</td>
</tr>
<tr>
<td>Post messages to the weekly discussions forum on three different days</td>
<td>10%</td>
</tr>
</tbody>
</table>

Each week, the online participation in these discussions contributes 3% to the overall course grade. Over ten weeks, this amounts to 30% of the overall course grade.

Assignments (40%)

There are 4 assignments during the semester. Each is worth 10% of the course grade. Each assignment is on www.mymathlab.com

Submission of each assignment is due by Tuesday at midnight in the week it has been assigned.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Due in Week</th>
</tr>
</thead>
<tbody>
<tr>
<td>HW1: Descriptive Statistics & Visualization of Data</td>
<td>3</td>
</tr>
<tr>
<td>HW2: Confidence Intervals</td>
<td>5</td>
</tr>
<tr>
<td>HW3: Hypothesis Testing</td>
<td>7</td>
</tr>
<tr>
<td>HW4: Regression Models</td>
<td>9</td>
</tr>
</tbody>
</table>

Late Policy: Half credit is deducted for an assignment that is submitted one day late. No credit is earned for an assignment submitted more than one day late.

Exams (30%)

There will be two exams during the course. The first is a midterm examination during week 6. It covers descriptive statistics, visualization of data, confidence intervals, and hypothesis testing. The final exam is during week 10 and covers all course material.

Both exams will be available during their respective weeks on the MyMathLab website. The exams will be untimed. Students will only be allowed to submit the exam once, but you can start & stop the exam and save answers before you submit.

Late Policy: The Final Exam will not be accepted beyond the due date.
II. Weekly Information

On the course site, the home page contains 10 weekly blocks, one for each week of the course. Within each weekly block on the home page, you will find information and resources about the activities for each week:

- Overview: Checklist, Objectives and Outcomes
- Discussions
- Topic Notes & Other Required Readings
- Additional Readings
- Assignments / Assessments

Initially some of these items (related to discussions, assignments or assessments) will be hidden on the course home page. As we come to the appropriate point in the course, they will become visible and available. A schedule for availability is included within this syllabus.

Most of the items listed in the checklists are required for this course, but some are highlighted as "[optional]" for this course. As your schedule permits, you are encouraged to complete the optional work, as it will benefit your learning.

The following pages of this syllabus present a summary of the weekly objectives, outcomes, readings, assignments, and assessments.

- The chapter readings for both books are planned to generally follow the sequence of the weekly topic notes.
- Some of the references to PMBOK Guide readings include mention of the weekly topic that is highlighted within the chapter.

<table>
<thead>
<tr>
<th>Week 1</th>
<th>Introduction to Visual Summaries of Data & Graphs 4/11-4/17</th>
</tr>
</thead>
</table>
| **Objectives** | • Develop an understanding of the different ways of representing data.
• Develop an understanding of different graphical summary methods, including pie graphs, bar graphs, histograms, line graphs, and scatter plots. |
| **Outcomes** | • Explain how to determine the most appropriate type of graph or chart for an appropriate situation.
• Compute graphs for data sets.
• Differentiate between a population and a sample. |
| **Readings** | □ Stats: Data & Models, Chapter 2-3
□ Week 1 Topic Notes and Readings
○ Week 1 Additional Readings (optional) |
| **Video** | □ Khan Academy: Reading & Interpreting Data |
| **Assignments / Assessments / Self-Assessments** | □ Complete the Academic Integrity Agreement
□ Watch the mandatory Welcome Session recording
□ Introduce yourself within the Introduce Yourself forum
□ Complete MyMathLab Orientation Exercise
□ Week 1 Discussion Topics (3%) |
Week 2
Measures of Central Tendency
4/18-4/24

Objectives
- Develop an understanding of different measures of centrality in data and when which is most appropriate to use.
- Calculate mean, median, mode for a given data set.
- Describe when using one measure of central tendency might be deceptive.

Outcomes
- Calculate mean, median, mode for a given data set.
- Describe when using one measure of central tendency might be deceptive.

Readings
- Stats: Data & Models, Chapter 4-5
- Week 2 Topic Notes and Readings
 - Week 2 Additional Readings (optional)

Video
- Khan Academy: Measures of Central Tendency

Assignments / Assessments / Self-Assessments
- Week 2 Discussion Topics (3%)

Week 3
Measures of Variation
4/25-5/1

Objectives
- Develop an understanding of variation as a measure of dispersion of data about the mean.
- Develop understanding of skew and shape to a distribution.
- Recognize when to use sample standard deviation and population standard deviation.

Outcomes
- Calculate range, standard deviation, and variance both by hand and using MS Excel.
- Describe how increasing standard deviation changes the shape of a distribution function.

Readings
- Stats: Data & Models, Chapter 10-12
- Week 3 Topic Notes and Readings
- Week 3 Additional Readings (optional)

Video
- Khan Academy: Measures of Variation

Assignments / Assessments / Self-Assessments
- Week 3 Discussion Topics (3%)
- MML Assignment 1: Descriptive Statistics & Visualization of Data (10%)

Week 4
Confidence Intervals, part 1
5/2-5/8

Objectives
- Develop an understanding of error in point estimates of a population parameter.
- Develop an understanding of when to use a T-distribution or a Z-distribution in computation of error.
- Develop an understanding of how a confidence interval width changes as number of samples and confidence level change.

Outcomes
- Compute one sample confidence intervals for proportion, mean, and standard deviation.
- Describe when to use different sampling distributions (Z, T, Chi-squared) for different confidence intervals.

Readings
- Stats: Data & Models, Chapter 18
- Week 4 Topic Notes and Readings
 - Week 4 Additional Readings (optional)

Video
- Khan Academy: Confidence Intervals

Assignments / Assessments / Self-Assessments
- Week 4 Discussion Topics (3%)
Week 5
Confidence Intervals, part 2

5/9-5/15

| Objectives | • Develop an understanding of when to use a two sample confidence interval vice a one sample confidence interval.
• Develop an understanding of when two samples are independent and dependent.
• Develop an understanding of what types of problems confidence intervals for differences of parameters can solve.
| Outcomes | • Compute two sample confidence intervals for differences of proportion, mean, and standard deviation.
• Describe similarities and differences between one sample confidence intervals and two sample confidence intervals.
| Readings | □ Stats: Data & Models, Chapter 18
□ Week 5 Topic Notes and Readings
□ Week 5 Additional Readings (optional)
| Video | □ Khan Academy: Confidence Interval for Difference of Two Means
□ Khan Academy: Confidence Interval for Difference of Two Means, Take Two
| Assignments / Assessments / Self-Assessments | □ Week 5 Discussion Topics (3%)
□ MML Assignment 2: Confidence Intervals (10%)

Week 6
Hypothesis Testing, part 1

5/16-5/22

| Objectives | • Develop an understanding of the concept of a hypothesis tests and the difference between hypothesis tests for different parameters.
| Outcomes | • Describe the difference between a hypothesis test for proportion versus mean.
• Describe the difference between the t-distribution and the z-distribution.
| Readings | □ Stats: Data & Models, Chapter 19-20
□ Week 6 Topic Notes and Readings
□ Week 6 Additional Readings (optional)
| Video | □ Khan Academy: Hypothesis Tests
| Assignments / Assessments / Self-Assessments | □ Week 6 Discussion Topics (3%)
□ MML Midterm Exam (15%)

Week 7
Hypothesis Testing, part 2

5/23-5/29

| Objectives | • Develop a definition and understanding comparing groups of data using two-sample tests.
• Develop an understanding of two sample tests vs one sample tests
| Outcomes | • List the various types of two sample tests and when to use what type of test
• Describe two sample t-tests and two sample z-tests
| Readings | □ Stats: Data & Models, Chapter 22
□ Week 7 Additional Readings (optional)
| Video | □ Khan Academy: Hypothesis Testing with Two Samples
| Assignments / Assessments / Self-Assessments | □ Week 7 Discussion Topics (3%)
□ MML Assignment 3: Hypothesis Testing (10%)

Foundations of Data Science and Analytics Course Syllabus
Page 7 of 11
(Updated 09/02/15)
<table>
<thead>
<tr>
<th>Week 8</th>
<th>Regression, part 1</th>
<th>5/30-6/5</th>
</tr>
</thead>
</table>
| **Objectives** | • Develop an understanding of scatter plots.
• Develop an understanding of correlation versus causation.
• Construct scatter plots and correlation coefficients. |
| **Outcomes** | • Explain and construct scatter plots and compare and contrast regression versus correlation. |
| **Readings** | □ Stats: Data & Models, Chapter 6
□ Week 8 Topic Notes and Readings
○ Week 8 Additional Readings (optional) |
| **Video** | □ Khan Academy: Scatter Plots |
| **Assignments / Assessments / Self-Assessments** | □ Week 8 Discussion Topics (3%) |

<table>
<thead>
<tr>
<th>Week 9</th>
<th>Regression, part 2</th>
<th>6/6-6/12</th>
</tr>
</thead>
</table>
| **Objectives** | • Develop an understanding of the "line of best fit".
• Computation of the regression line for paired data.
• Explain assumptions and conditions of linear regression |
| **Outcomes** | • Describe the concept of a linear model and the line of best fit; computation of regression line. |
| **Readings** | □ Stats: Data & Models, Chapter 7
□ Week 9 Topic Notes and Readings
□ Week 9 Additional Readings (optional) |
| **Video** | □ Khan Academy: Linear Regression and Correlation |
| **Assignments / Assessments / Self-Assessments** | □ Week 9 Discussion Topics (3%)
□ MML Assignment 4: Regression Models (10%) |

<table>
<thead>
<tr>
<th>Week 10</th>
<th>Final Exam & Reflection</th>
<th>6/13-6/19</th>
</tr>
</thead>
</table>
| **Objectives** | • Understand the direction data science and analytics is going and its likely course in the future
• Understand the career path of a data scientist and analytics-related roles, and the possible directions these paths can take in the future |
| **Outcomes** | • Describe how data science has developed and matured, and its likely path over the next several years
• Describe the possible career choices in the areas of data science and analytics |
| **Readings** | □ Week 10 Topic Notes and Readings
○ Week 10 Additional Readings (optional) |
| **Video** | □ None. |
| **Assignments / Assessments / Self-Assessments** | □ Week 10 Discussion Topics (3%)
□ Final Exam (15%). Available Wednesday, Week 10. Due by following Tuesday, Week 10 |
III. Course Policies and Procedures

Orientation
From the home page on the course web site, please review the Student Orientation Course.

Asynchronous and Synchronous Work
All required work for the course may be done asynchronously; i.e., students can login to the course, read/download materials, post to the Discussions, and submit assignments throughout the course week. Please carefully follow the syllabus and the weekly checklists to help manage your time throughout the course week; once we enter week 2 or 3, students typically become much more comfortable with the pace and flow of the course. As needed throughout the semester, synchronous Chat sessions can be made available using the course site’s Chat Room facility.

Work Expectations
Students are responsible to explore each week’s materials and submit required work by the specified due dates. On average, a student can expect to spend approximately 3-5 hours per week reading and approximately 4-6 hours per week completing assignments, assessments, and posting to discussions. The calendar of due dates is located at the end of this syllabus.

Although students plan to complete course work according to the specified due dates, sometimes things interrupt these plans, resulting in late work. In most cases, late work is accepted, but there is an impact on the grading (as discussed in the following section), and repeated late work can significantly and negatively affect your grade.

In general, students are expected to manage the risks that may adversely affect their timely completion of course work to minimize the grading penalty for late work. Whenever you anticipate that some work will be late for some reason, a note to the instructor is appreciated.

Late Work
See the section titled “Description of Grading Components” for the criteria for handling late work related to the online participation components of this course. In order to allow adequate time for students to respond to the messages of others, it is especially important that messages from each student be posted in a timely manner. Grading penalties are incurred for any late postings.

The Research Paper and Final Exam will not be accepted late.

Grading Standards
Grades are not given but are earned. Students are graded on demonstration of knowledge or competence, rather than on effort alone. Each student is expected to maintain high standards of honesty and ethical behavior. All student work submitted during the course is meant to represent your own individual work. Students are expected to conduct themselves courteously online. If in the instructor’s judgment a student’s conduct is not courteous, that student's grade may be reduced.

All course work should be completed with attention to good grammar and spelling. When instructions are provided regarding the mechanics for completing or submitting work, these details should be carefully followed. If submitted work is inadequate in any of these regards, the grade may be reduced.

How Points and Percentages Equate to Grades

<table>
<thead>
<tr>
<th>Percentage Range</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-94</td>
<td>A</td>
</tr>
<tr>
<td>93-90</td>
<td>A-</td>
</tr>
<tr>
<td>89-87</td>
<td>B+</td>
</tr>
<tr>
<td>86-83</td>
<td>B</td>
</tr>
<tr>
<td>82-80</td>
<td>B-</td>
</tr>
<tr>
<td>79-77</td>
<td>C+</td>
</tr>
<tr>
<td>76-73</td>
<td>C</td>
</tr>
<tr>
<td>72-70</td>
<td>C-</td>
</tr>
<tr>
<td>69-67</td>
<td>D+</td>
</tr>
<tr>
<td>66-63</td>
<td>D</td>
</tr>
<tr>
<td>62-60</td>
<td>D-</td>
</tr>
<tr>
<td>59 or <</td>
<td>F</td>
</tr>
</tbody>
</table>

(Updated 09/02/15)
Feedback
Feedback will be provided automatically for all homework assignments and exams through the MyMathLab platform. It will mark each question as correct or wrong. For homework problems you can use the "Help me solve this" button to find step-by-step breakdowns to a problem. In each case, review comments are provided through the relevant LATTE assignment activity.

Feedback about online participation will be provided through the "Participation Feedback" assignment activity within each weekly block. Participation grading will be completed within 7 days of the due date.

Grades for all of the course assignments and assessments are viewable through the LATTE "Grades" facility within the Left-Frame block on our course home page.

Access to LATTE Web Site
Members of the University's technical staff have access to all course sites to aid in course setup and technical troubleshooting. Program Chairs and a small number of Graduate Professional Studies (GPS) staff have access to all GPS courses for oversight purposes. Students enrolled in GPS courses can expect that individuals other than their fellow classmates and the course instructor(s) may visit their course for various purposes. Their intentions are to aid in technical troubleshooting and to ensure that quality course delivery standards are met. Strict confidentiality of student information is maintained.

Students have access to the LATTE course web site throughout the duration of course and for approximately two months after the course completes. If there are any materials that students want to download from their course site, this should be done before the site is closed to student view.

Class Schedule
The course runs for ten weeks. Each week begins on a Wednesday and ends on a Tuesday.

To accommodate celebration of holidays, traveling on business trips, or taking time for vacations, students are expected to schedule their course work accordingly, submitting work in advance of due dates when necessary.

<table>
<thead>
<tr>
<th>Week</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wednesday, 04/11/18 – Tuesday, 04/17/18</td>
</tr>
<tr>
<td>2</td>
<td>Wednesday, 04/18/18 – Tuesday, 04/24/18</td>
</tr>
<tr>
<td>3</td>
<td>Wednesday, 04/25/18 – Tuesday, 05/01/18</td>
</tr>
<tr>
<td>4</td>
<td>Wednesday, 05/02/18 – Tuesday, 05/08/18</td>
</tr>
<tr>
<td>5</td>
<td>Wednesday, 05/09/18 – Tuesday, 05/15/18</td>
</tr>
<tr>
<td>6</td>
<td>Wednesday, 05/16/18 – Tuesday, 05/22/18</td>
</tr>
<tr>
<td>7</td>
<td>Wednesday, 05/23/18 – Tuesday, 05/29/18</td>
</tr>
<tr>
<td>8</td>
<td>Wednesday, 05/30/18 – Tuesday, 06/05/18</td>
</tr>
<tr>
<td>9</td>
<td>Wednesday, 06/06/18 – Tuesday, 06/12/18</td>
</tr>
<tr>
<td>10</td>
<td>Wednesday, 06/13/18 – Tuesday, 06/19/18</td>
</tr>
</tbody>
</table>

Calendar of Due Dates

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Available</th>
<th>Due</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment #1 (on MML)</td>
<td>Wed, Week 1</td>
<td>Tues, Week 3</td>
</tr>
<tr>
<td>Assignment #2 (on MML)</td>
<td>Wed, Week 1</td>
<td>Tues, Week 5</td>
</tr>
<tr>
<td>Assignment #3 (on MML)</td>
<td>Wed, Week 1</td>
<td>Tues, Week 7</td>
</tr>
<tr>
<td>Assignment #4 (on MML)</td>
<td>Wed, Week 1</td>
<td>Tues, Week 9</td>
</tr>
<tr>
<td>Midterm Exam (on MML)</td>
<td>Wed, Week 1</td>
<td>Tues, Week 6</td>
</tr>
<tr>
<td>Final Exam (on MML)</td>
<td>Wed, Week 10</td>
<td>Tues, Week 10</td>
</tr>
<tr>
<td>Responses to 2 Discussion Topics</td>
<td>Weds of each week</td>
<td>1 by Sat each week; 1 by Mon each week</td>
</tr>
<tr>
<td>Other Substantive Posts (2 per week)</td>
<td></td>
<td>2 by Tues each week</td>
</tr>
</tbody>
</table>

(Updated 09/02/15)
IV. University and Division of Graduate Professional Studies Standards

Please review the policies and procedures of Graduate Professional Studies, found at http://www.brandeis.edu/gps/resources/student-handbook.html.

We would like to highlight the following.

Learning Disabilities
If you are a student with a documented disability on record at Brandeis University and wish to have a reasonable accommodation made for you in this course, please contact me immediately.

Academic Honesty and Student Integrity
Academic honesty and student integrity are of fundamental importance at Brandeis University and we want students to understand this clearly at the start of the term. As stated in the Brandeis Rights and Responsibilities handbook, "Every member of the University Community is expected to maintain the highest standards of academic honesty. A student shall not receive credit for work that is not the product of the student's own effort. A student's name on any written exercise constitutes a statement that the work is the result of the student's own thought and study, stated in the student's own words, and produced without the assistance of others, except in quotes, footnotes or references with appropriate acknowledgement of the source."

In particular, students must be aware that material (including ideas, phrases, sentences, images, photographs, charts, etc.) taken from the Internet and other sources MUST be appropriately cited if quoted, and footnoted in any written work turned in for this, or any, Brandeis class. Also, students will not be allowed to collaborate on work except by the specific permission of the instructor. Failure to cite resources properly may result in a referral being made to the Office of Student Development and Judicial Education. The outcome of this action may involve academic and disciplinary sanctions, which could include (but are not limited to) such penalties as receiving no credit for the assignment in question, receiving no credit for the related course, or suspension or dismissal from the University.

Further information regarding academic integrity may be found in the following publications: "In Pursuit of Excellence - A Guide to Academic Integrity for the Brandeis Community", "(Students') Rights and Responsibilities Handbook", AND "Graduate Professional Studies Student Handbook". You should read these publications, which all can be accessed from the Graduate Professional Studies Web site (http://www.brandeis.edu/gps/). A student that is in doubt about standards of academic honesty (regarding plagiarism, multiple submissions of written work, unacknowledged or unauthorized collaborative effort, false citation or false data) should consult either the course instructor or other staff of the Division of Graduate Professional Studies.

University Caveat
The above schedule, content, and procedures in this course are subject to change in the event of extenuating circumstances.