2018 Syllabus

<table>
<thead>
<tr>
<th>Instructors</th>
<th>Pito Salas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schedule</td>
<td>Wednesday 2:00pm-4:50pm (discussion)</td>
</tr>
<tr>
<td>Schedule</td>
<td>Wednesday 6:30pm-9:20pm (lab)</td>
</tr>
<tr>
<td>Location</td>
<td>Robotics Lab (basement of GZang)</td>
</tr>
<tr>
<td>On-demand office Hours</td>
<td>http://www.calendly.com/pitosalas/ftf</td>
</tr>
<tr>
<td>Prerequisites</td>
<td>Cosi12b, 21a, and Juniors and above, permission</td>
</tr>
<tr>
<td>Expectations</td>
<td>Success in this 4 credit hour course is based on the expectation that students will spend a minimum 15 hours outside of the weekly 3 hour meeting on learning, coding, and doing other work.</td>
</tr>
<tr>
<td>Email contact:</td>
<td>pitosalas@brandeis.edu</td>
</tr>
<tr>
<td>Office</td>
<td>Volen 134</td>
</tr>
</tbody>
</table>

Introduction

Robots are everywhere, working quietly behind the scenes in labs and factories, on highways and in the home and now constantly on the front page. It is a rich area of Computer Science Research and at the same time a challenging arena of Applied Computer Science and Engineering. This makes for a very attractive context for learning.

In this course you will gain an understanding of how mobile robots are designed and work, while contributing towards the long term development of the Campus Rover. We will read the seminal papers from the field, and program algorithms on actual robots! You will learn concepts like localization, navigation, SLAM, and of Arduino, ROS, and many more are surveyed and applied to a variety of projects.

You will be working on a team, designing, implement and testing components of the robot. While there are weekly class meetings, the bulk of
the learning (and work) will come during **extensive** out-of-classroom team and lab work. You will be expected to do a lot of individual research to solve problems and get over obstacles because of the newness of this field. Test your self-sufficiency and persistence in the face of setbacks. Whether you choose to go deeper into robotics or not, the experiences of learning from failure, and learning how to confront major unknowns will hopefully be important and meaningful.

Learning Objectives

The purpose of this course is to improve students’ understanding of the computer science and engineering of robotics, getting exposure to some of the big ideas, algorithms and structures that come into play. Students will work in small teams and with little guidance to investigate how to address certain challenges, and be highly self-sufficient and motivated to drive projects to their conclusion.

Outcomes

- Students will be able to demonstrate understanding of how a simple wheeled robot works, how to control it through software, learning some key algorithms along the way, and implementing the code for a series of more and complicated challenges.

- Students will learn to program the all-important “Robot Operating System”, ROS, which is the leading real-time distributed operating system for research and industrial robotics. They will demonstrate understanding of the key concepts of ROS, nodes, topics, commands and services.

- Students will demonstrate effective working in teams, designing new algorithms and solving problems of navigation and robotics, brainstorming, collaborating, implementing, testing and demonstrating the results of their work.
Students will learn and demonstrate professional and agile software engineering processes, including writing elegant, readable, documented code, working in rapid iterations, each with a goal and a demo, and performing weekly standups.

The first ever students of this course, in Fall of 2017, reported these as their learnings (that would still be with them in 5 years)

1. ROS concepts: nodes, publish, subscribe, ROSCOre, etc. (6)
2. Importance of debugging and testing with simulation and how to do it (4)
3. Effective working with a technical team: communication, documentation, formulating points of view. Giving live demos to teammates (4)
4. Accepting that what happens in reality often doesn’t match what should happen in theory (3)
5. Ability to dig into detailed technical documentation to get answers. Experimenting with different possible solutions and trying different approaches before pivoting. How to build a system by combining different frameworks and libraries (3)
6. What Robotics is all about. Navigation and Localization in mobile robotics (2)
7. Basics of agile: stories, ranking, standups, tracking progress, etc. (2)
8. Linux. How a distributed operating system frameworks (2)
9. Web API: how to design one and how a web server works
10. Architectural thinking: breaking problem into pieces, prioritize and modularize

Course Structure

This course is still in an experimental phase and so you should expect that the content of the course will evolve as the semester progresses. With only one meeting a week, a lot if not most of the work will happen outside that meeting, with students working independently and in teams. There is a very
high expectation and reliance on students’ independence, initiative, self-motivation, and problem solving skills.

Week 1-3

Introduction to robotics with mini lectures covering some of the basics. Students will form teams of 3 students to learn how to program and control a simple Robot. Programming a “simple robot” is not simple, because once your software is interacting with the ‘real world’, odd things happen (see *Martin - Real Robots Don’t Drive Straight)*.

Students will experiment individually and with their team to write programs for the mBot robot and think through how to deal with sensors and motors and process the noisy information that comes at their programs. This will culminate in a competition among the teams to write software to have their mBot’s traverse mazes of growing challenge. The goal for this section at a high level is to develop a visceral understanding of the noise, inaccuracies, environmental effects and non-reproducability of naive approaches to programming a robot.

Week 4-6

Mini lectures on ROS the Robot Operating System combined with two online courses in autonomous vehicles, localization and mapping. The goal here is for students to really understand how to program in ROS and understand the subtleties of localization and obstacle detection without yet resorting to advanced algorithms like SLAM.

Week 7-13

We break into three teams, Inside Navigation, Outside Navigation and Human Interaction. Each team will pursue high level objectives in each of the areas. They will begin by reading some of the seminal papers in their area and share their learnings with the class. They will organize themselves to decide
what steps towards their objectives they will take and how they will organize their work.

Grading

Grading will be based on the following:

- **~33%**: Participation: Engagement with the course, presence in classroom discussions, following up on commitments and obligations, contributing in the further design of the course with ideas and content. This will be assessed by the instructor’s personal observations.

- **~33%**: Individual work contributing to programming projects and team projects, documentation of this work in the lab notebooks, demonstrating seriousness and independence. This will be assessed by reviewing the lab notebooks, personal observation and peer and self assessments.

- **~33%**: Final Deliverables: There will be a well defined, team based, final deliverable in the form of code and documentation. This will be assessed via a rubric.

Team Work

Much of the work will be in teams. Some of the steps will have teams of 2 or so students, but the bigger ones will have teams of 5 or maybe even all students together. Teams will usually be working in the Robotics lab, by themselves or with a teaching assistant. Teams will set their own weekly goals.

Prerequisites

This course is a “structured independent study.” We will accept up to 8 students, with some restrictions. You need to be a Junior or above, and have done well in Cosi 11a and Cosi12b and have a proven aptitude as a
programmer, independent worker, and good team member. If you want to apply, just send an email to me pitosalas@brandeis.edu.

Required Course Text Books

1. **Programming Robots with ROS**. This is an excellent book that introduces ROS from the bottom up. You should get a copy. Beware, ROS is pretty complicated. It’s real-time, distributed operating system which is installed both on the robot and on the controlling laptop (if there is one). It can be quite difficult to configure and finnicky. But it is very very powerful!

2. **ROS By Example Volume 1** This is an excellent supplement to Programming Robots with ROS. We will be doing examples from this book. I highly recommend that you get access to it.

Curated list of resources

1. Papers selected by instructor. [Selection of key papers](#)

2. Videos curated by instructor: [Youtube cosi119a playlist](#)

3. **Podcast about Self-Driving Deep Learning** - A really good background about applying deep learning to autonomous navigation. Just 1 hour.

4. **DataCamp**. This is an amazing site for learning Python and other useful Data science skills. If you are looking to brush up or learn new skills, you should definitely consider signing up!

5. **Artificial Intelligence for Robotics** - A fantastic introduction to the basics of SLAM and localization, doing some of the elementary mathematics that is the foundation of this core technique in navigation.

6. I like this overview of good [Python Style](#). This is the [official Python Style Guide](#)
7. Columbia edX Course on Robotics and ROS: This is an extensive and excellent course on Robotics with ROS, the Robot Operating System. I have followed it all and found that it is helpful in many different ways. You should follow the whole thing during the first 3 weeks of the course.

8. MIT Self Driving Cars Course is a great online course consisting of lectures and other content. I recommend you purusing it!

9. From ETH Zurich course Programming for Robots. From my review this looks like a nice video introduction and review of ROS. Here are the Slides and videos

10. Our new Robot platform is a Turtlebot 2. Even though the number is lower, it should be more powerful and more reliable. Learning the TurtleBot and ROS is an excellent guide.

Change Policy

The instructor reserves the right to make changes to this syllabus and the associated curriculum web site if he deems it necessary. Any changes will either be announced in class or through e-mail. All students are responsible for finding out about such changes. Each student must be aware that not all assignments are listed in the syllabus. Students must use their common sense and not look for loopholes in the syllabus because, ultimately, the instructor has the final say in all matters. If you are confused on any assignment, ask the instructor for clarification.

By deciding to stay in this course, you are agreeing to all parts of this syllabus. In fairness to everyone, the syllabus must apply equally to all students without exception.