Chemistry 25a Organic Chemistry
Fall 2014 Syllabus
Brandeis University

Lecturer:
Dr. Kristen Mascall (Email: kmascall@brandeis.edu)
Office: SSC 00-08B (Telephone: 6-2545)

SSG leaders:
Hina Bhat (email: hina651@brandeis.edu)
Lekha Grandhi (email: lekha94@brandeis.edu)
Ashley Klein (email: asklein16@brandeis.edu)
Andrew Koides (email: akoides@brandeis.edu)
Austin Lai (email: alai@brandeis.edu)
Andrew Miller (email: ajm815@brandeis.edu)

Course description:
Organic chemistry is the study of carbon-containing compounds. Chem 25a is the first module of a two-semester course that introduces you to fundamental topics of organic chemistry such as structure, function and reactivity of organic molecules. In this course we will explore how and why organic reactions occur, and the relevance of organic chemistry to biological systems, medicine, environmental science, and industry will be emphasized through current literature examples.

Prerequisite: A satisfactory grade (C- or better) in Chem 11b or Chem 15b or the equivalent.

Learning goals and objectives:
In Chem 25a, emphasis is placed on understanding fundamental concepts and applying to problems, rather than memorizing. You will develop problem-solving skills and learn how to think logically through questions to derive an answer. Mastering organic chemistry takes work – it will not be enough to read the chapters, attend lectures, and take notes. While all these are important and should not be neglected, your greatest benefit will come from practicing many problems continually. Frantically cramming before exams will not help much; you have to diligently keep up with the material. A reasonable expectation is that you will expend at least three hours of out-of-class effort for every hour of classroom instruction. By the end of this course, you should (1) understand the structures and notations of organic compounds; (2) know how to write reasonable reaction mechanisms; and (3) be familiar with the reactivity of certain functional groups.

Class times:
Lectures: Mon, Wed, Thurs 11:00 – 11:50 am in Gerstenzang 123.
Structured Study Group (SSG): Tues 6:30 – 7:50 pm (first meeting in Gerstenzang 123; see LATTE for subsequent room locations). Lecture and SSG attendance are mandatory.
Examinations will be held during Tuesday sessions 6:30 – 8:00 pm in Gerstenzang 123.

Office Hours:
Office hours: Mon, Tues, Thurs, Fri 1:30 – 3:30 pm in SSC 00-08B, and other times by appointment.
SSG leaders will hold weekly office hours (times and locations to be announced).
Required materials:
- Molecular Model Kit: Darling organic and inorganic molecular models ISBN 978-09648837-1-0 (or any other organic chemistry model kit)
- All course handouts will be available on LATTE.

Grading:
Grades will be distributed as follows:
- Three examinations: 50%
- Final examination: 35%
- SSG quizzes (7 of 9): 15%
Course grades will be determined based on the class average (typically set between a B or B-) and student distributions around the average.

Examinations:
Examinations will be held during Tuesday sessions 6:30 – 8:00 pm in Gerstenzang 123.
Exam 1 (September 30), Exam 2 (November 4), Exam 3 (December 2)
Final Exam (December 16 at 9:15 am – tentatively scheduled by the registrar for Block D)

Quizzes and problem sets:
Quizzes will be administered during each SSG session. Nine SSQ quizzes will be given, but only seven of them will contribute to your overall grade. Your two lowest-scoring SSG quizzes will be dropped. A percentage of your SSG grade will be based on completion of problem sets handed in at the beginning of each SSG session. If you arrive more than five minutes late to SSG, you will receive an automatic zero for the problem set.

Makeup exams and quizzes:
There will be NO makeup examinations or quizzes. If you arrive late to an exam or quiz, no additional time will be given. If you miss an exam due to illness, you must have a documented medical excuse, and your grade will be based on the average of all the other exams and quizzes for the semester. Varsity athletes with *unavoidable* travel absences for competition purposes may take their exams during their absence from campus *if it is possible to take the exam at exactly the scheduled time under the supervision of their Brandeis-employed athletic coach.*

Regrades:
You may request that an exam be regraded if you suspect errors in grading. The exam in question, along with a note explaining the nature of the grading dispute, must be submitted to Dr. Mascall *no later than a week after the exam is returned.* This is a firm deadline. Please note that the entire exam will be regraded.

Homework:
You are expected to be reading the chapter before or while we cover it. Practice problems from the textbook will be suggested for each chapter, with the answers available in the solutions manual. Homework will not be collected or graded, and it is in your best interest to practice as many questions as possible.
Structured Study Group (SSG) sessions:
SSGs provide an opportunity for students to learn and review course material in a structured environment using a team learning strategy. The class will be divided into six groups alphabetically by last name and each group will meet in an assigned classroom (to be announced later on LATTE). SSG sessions are led by carefully chosen students who have previously completed organic chemistry and are devoted to helping new students succeed in the course. SSG attendance is mandatory. The format for SSG is as follows:
6:30 pm – Problem set hand-in
6:30-7:00 pm – problem set group discussions (groups of 3 or 4)
7:00-7:15 pm – TA-led discussion
7:15-7:50 pm – quiz

Honors Option:
The honors option of organic chemistry is not being offered this year.

Use of electronics:
The use of cellular phones and laptops during lectures, SSG and exams is prohibited. If you wish to leave your phone on in “silent” mode because of an ongoing emergency that you may need to respond to, please let me know before the lecture begins. This applies to lecture only, not to exams or quizzes. The use of tablets is allowed during lectures and SSG for taking notes, but is prohibited during exams and quizzes. If you require special accommodations for electronic use not addressed above, please see me.

Disabilities:
If you are a student with a documented disability on record at Brandeis University and wish to have a reasonable accommodation made for you in this class, please contact Dr. Mascall and present your letter of accommodation as soon as possible. If you have questions about documenting a disability or requesting academic accommodations, you should contact Beth Rodgers-Kay in Academic Services (6-3470 or brodgers@brandeis.edu). Letters of accommodation should be presented at the start of the semester to ensure provision of accommodations, and absolutely before the day of an exam or test. Please note that accommodations cannot be granted retroactively. The instructor will not be accountable for providing an accommodation when a student has not presented a letter of accommodation before a given exam or assignment in question.

Academic Integrity:
You are expected to be familiar with, and to follow, the University’s policies on academic integrity. Please consult the Brandeis University Handbook on Rights and Responsibilities for all policies and procedures (pay particular attention to section 4). All policies related to academic integrity apply to in-class and take home assignments, exams and quizzes. Any work submitted by a student for academic credit will be the student’s own work. Students may only collaborate on assignments with permission from the instructor. Allegations of alleged academic dishonesty will be reported to the Brandeis Student Rights and Community Standards Office. A first offense may result in zero assignment credit for all involved, and a repeat offense may result in suspension or dismissal from the University.
Course schedule:

<table>
<thead>
<tr>
<th>Aug</th>
<th>Mon</th>
<th>Tues</th>
<th>Wed</th>
<th>Thurs</th>
<th>Tentative topics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>First day Lec</td>
</tr>
<tr>
<td>Sep</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>Ch. 1: Chemical bonding and chemical structure</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SSG Mtg</td>
<td>Lec</td>
<td>Lec</td>
<td>Ch. 1: Chemical bonding and chemical structure Ch. 15.6 – Resonance</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>Ch. 1: Chemical bonding and chemical structure Ch. 2: Alkanes</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>Ch. 2: Alkanes Ch. 7.1 – 7.6: Cycloalkanes</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>Ch. 3: Acids and bases Rosh Hashanah</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Br. Thurs</td>
<td>Lec</td>
<td>Lec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>30</td>
<td>1</td>
<td>2</td>
<td>Ch. 3: Acids and bases Ch. 6: Principles of stereochemistry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exam 1</td>
<td>Lec</td>
<td>Lec</td>
<td></td>
</tr>
<tr>
<td>Oct</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>Ch. 6: Principles of stereochemistry Sukkot</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>Br. Thurs</td>
<td>Drop</td>
<td>SSG4</td>
<td>Ch. 4: Introduction to alkenes Shemini Atzeret</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>Ch. 4: Introduction to alkenes Ch. 5: Addition reactions of alkenes</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>Ch. 5: Addition reactions of alkenes Ch. 7.7 – 7.9: Stereochemistry of chemical reactions</td>
</tr>
<tr>
<td>Nov</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>Ch. 14: Chemistry of alkynes</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>Ch. 9: Chemistry of alkyl halides Drop with W Lec</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>Ch. 10: Chemistry of alcohols</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>Ch. 10: Chemistry of alcohols Thanksgiving recess</td>
</tr>
<tr>
<td>Dec</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>Ch. 15: Dienes, resonance, aromaticity</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Last day</td>
<td>9</td>
<td>10</td>
<td>Ch. 15: Dienes, resonance, aromaticity</td>
</tr>
</tbody>
</table>

Chemistry 25a Syllabus
Dr. Kristen Mascall
Page 4
Fall 2014